Linear Algebra: Solving Linear Equations - Vectors and Linear Equations #1
Concepts
Multiplication by rows
\(Ax\) comes from dot products, each row times the column \(x\):
\[Ax = \begin{pmatrix}(row 1) \cdot x \\ (row 2) \cdot x \\ (row 3) \cdot x \end{pmatrix}\]Multiplication by columns
\(Ax\) is a combination of column vectors:
\[Ax = x(\text{column 1}) + y(\text{column 2}) + z(\text{column 3})\]Questions
Question 1
Write \(2x+3y+z+5t=8\) as a matrix \(A\) (how many rows?) multiplying the column vector \(x = (x, y, z, t)\) to produce \(b\). The solutions \(x\) fill a plane or “hyperplane” in 4-dimensional space. The plane is 3-dimensional with no 4D volume.
Question 2
Find the matrix \(P\) that multiplies \((x, y, z)\) to give \((y, z, x)\). Find the Matrix \(Q\) that multiplies \((y, z, x)\) to bring back \((x, y, z)\).
Question 3
(a) What 2 by 2 matrix \(R\) rotates every vector by \(90\,^{\circ}\)? \(R\) times \(\begin{pmatrix}x \\ y\end{pmatrix}\) is \(\begin{pmatrix}y \\ -x\end{pmatrix}\) (b) What 2 by 2 matrix \(R^{2}\) rotates every vector by \(180\,^{\circ}\)?
Answers
Answer 1
\[Ax = \begin{pmatrix}2 & 3 & 1 & 5\end{pmatrix}\begin{pmatrix}x \\ y \\ z \\ t \\ \end{pmatrix}\]how many rows?
one row.
Answer 2
\[\begin{pmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\begin{pmatrix}x \\ y \\ z\end{pmatrix} = \begin{pmatrix}y \\ z \\ x\end{pmatrix}\] \[\therefore P = \begin{pmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{pmatrix}\]Find the matrix \(P\) that multiplies \((x, y, z)\) to give \((y, z, x)\).
\[\begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\begin{pmatrix}y \\ z \\ x\end{pmatrix}\] \[\therefore Q = \begin{pmatrix}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\]Find the Matrix \(Q\) that multiplies \((y, z, x)\) to bring back \((x, y, z)\).
Answer 3
(a)
\[\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix} = \begin{pmatrix}y \\ -x\end{pmatrix}\] \[\therefore R = \begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix}\](b)
Intuitively, if a \(90\,^{\circ}\) rotation occurs when R is applied once, wouldn’t a \(180\,^{\circ}\) rotation occur when R is applied twice?
\[\therefore \text{ Let's apply R to the answer obtained from (a) again.}\] \[\begin{pmatrix}y \\ -x\end{pmatrix}\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix} = \begin{pmatrix}-x \\ -y\end{pmatrix}\]
댓글남기기