Linear Algebra: Matrices and Linear Equations - Multiplication of Matrices #2
Questions
Question 1
Rotations. Let \(R(\theta)\) be the matrix given by
\[R(\theta) = \begin{pmatrix}\cos{\theta}&-\sin{\theta}\\ \sin{\theta}&\cos{\theta}\end{pmatrix}.\](a) Show that for any two numbers \(\theta_{1}\), \(\theta_{2}\) we have
\[R(\theta_{1})R(\theta_{2}) = R(\theta_{1} + \theta_{2}).\][You will have to use the addition formulas for sine and cosine.]
(b) Show that the matrix \(R(\theta)\) has an inverse, and write down this inverse.
(c) Let \(A = R(\theta)\). Show that
\[A^{2} = \begin{pmatrix}\cos{2\theta}&-\sin{2\theta}\\ \sin{2\theta}&\cos{2\theta} \end{pmatrix}.\](d) Determine \(A^{n}\) for any positive integer \(n\). Use induction.
Question 2
For any vector \(X\) in \(R^{2}\) let \(Y = R(\theta)X\) be its rotation by an angle \(\theta\). Show that \(\left\|Y\right\| = \left\|X\right\|.\)
Question 3
Let \(A\) be a square matrix which is of the form
\[\begin{pmatrix}a_{11}&*&\cdots\cdots&&*\\ 0&a_{22}&*&\cdots&*\\ \vdots&&\ddots&&\vdots\\ &&&&*\\ 0&\cdots\cdots&0&&a_{nn}\end{pmatrix}\]The notation means that all elements below the diagonal are equal to 0, and the elements above the diagonal are arbitrary. One may express this property by saying that
\[a_{ij}=0 \text{ if } i>j.\]Such a matrix is called upper triangular. If \(A\), \(B\) are upper triangular matrices(of the same size) what can you say about the diagonal elements of \(AB\)?
Answers
Answer 1
(a)
\[R(\theta_{1})R(\theta_{2}) = \begin{pmatrix}\cos{\theta_{1}}&-\sin{\theta_{1}}\\ \sin{\theta_{1}}&\cos{\theta_{1}}\end{pmatrix}\begin{pmatrix}\cos{\theta_{2}}&-\sin{\theta_{2}}\\ \sin{\theta_{2}}&\cos{\theta_{2}}\end{pmatrix}\] \[=\begin{pmatrix}\cos{\theta_{1}}\cos{\theta_{2}}-\sin{\theta_{1}}\sin{\theta_{2}}&-\cos{\theta_{1}}\sin{\theta_{2}}-\sin{\theta_{1}}\cos{\theta_{2}}\\ \sin{\theta_{1}}\cos{\theta_{2}}+\cos{\theta_{1}}\sin{\theta_{2}}&-\sin{\theta_{1}}\sin{\theta_{2}}+\cos{\theta_{1}}\cos{\theta_{2}} \end{pmatrix}\] \[=\begin{pmatrix}\cos{(\theta_{1}+\theta_{2})}&-\sin{(\theta_{1}+\theta_{2})}\\ \sin{(\theta_{1}+\theta_{2})}&\cos{(\theta_{1}+\theta_{2})} \end{pmatrix}=R(\theta_{1}+\theta_{2})\](b)
The answer to the question is \(R(-\theta)\)
My answer to the question is \(\begin{pmatrix}\cos{\theta}&\sin{\theta}\\ -\sin{\theta}&\cos{\theta} \end{pmatrix}\)
Both answers are correct.
\[\because \begin{pmatrix}\cos{(-\theta)}&-\sin{(-\theta)}\\ \sin{(-\theta)}&\cos{(-\theta)}\end{pmatrix} = \begin{pmatrix}\cos{\theta}&\sin{\theta}\\ -\sin{\theta}&\cos{\theta} \end{pmatrix}\] \[(\because \sin(-\theta) = -\sin(\theta),\text{ } \cos(-\theta) = \cos(\theta))\](c)
\[A = R(\theta)\] \[A^2 = \begin{pmatrix}\cos{\theta}&-\sin{\theta}\\ \sin{\theta}&\cos{\theta} \end{pmatrix}\begin{pmatrix}\cos{\theta}&-\sin{\theta}\\ \sin{\theta}&\cos{\theta} \end{pmatrix}\] \[=\begin{pmatrix}\cos^2{\theta}-\sin^2{\theta}&-2\sin{\theta}\cos{\theta}\\ 2\sin{\theta}\cos{\theta}&\cos^2{\theta}-\sin^2{\theta} \end{pmatrix} = \begin{pmatrix}\cos{2\theta}&-\sin{2\theta}\\ \sin{2\theta}&\cos{2\theta} \end{pmatrix}\] \[(\because \sin{2\theta} = \sin{(\theta+\theta)} = \sin{\theta}\cos{\theta}+\cos{\theta} sin{\theta} = 2\sin{\theta}\cos{\theta})\] \[(\because \cos{2\theta} = \cos{(\theta+\theta)} = \cos^2{\theta}-\sin^2{\theta})\](d)
\[A=\begin{pmatrix}\cos{\theta}&-\sin{\theta}\\ \sin{\theta}&\cos{\theta} \end{pmatrix}\] \[A^{2}=\begin{pmatrix}\cos{2\theta}&-\sin{2\theta}\\ \sin{2\theta}&\cos{2\theta} \end{pmatrix}\] \[\vdots\] \[A^{k} = \begin{pmatrix}\cos{k\theta}&-\sin{k\theta} \\ \sin{k\theta}&\cos{k\theta} \end{pmatrix}?\]Assume True:
\[A^{k} = \begin{pmatrix}\cos{k\theta}&-\sin{k\theta} \\ \sin{k\theta}&\cos{k\theta} \end{pmatrix}\]Show True:
\[A^{k+1} = \begin{pmatrix}\cos{(k+1)\theta}&-\sin{(k+1)\theta} \\ \sin{(k+1)\theta}&\cos{(k+1)\theta} \end{pmatrix}\]So \(A^{k+1}\) is true.
\[\therefore \text{The given statement is true for all k.}\]Answer 2
\[Y = R(\theta)X = \begin{pmatrix}\cos{\theta}&-\sin{\theta}\\ \sin{\theta}&\cos{\theta} \end{pmatrix}\begin{pmatrix}x_{1}\\ x_{2}\end{pmatrix}\] \[(\because \text{for any vector } X \text{ in } R^2.)\] \[=\begin{pmatrix}\cos{\theta}&-\sin{\theta}\\ \sin{\theta}&\cos{\theta} \end{pmatrix}\begin{pmatrix}x1\\ x2\end{pmatrix}=\begin{pmatrix}{x_{1}}\cos{\theta}-{x_{2}}\sin{\theta}\\ {x_{1}}\sin{\theta}+{x_{2}}\cos{\theta} \end{pmatrix}\] \[\therefore y_{1} = {x_{1}}\cos{\theta}-{x_{2}}\sin{\theta}, y_{2} = {x_{1}}\sin{\theta}+{x_{2}}\cos{\theta}\]Answer 3
Let \(B\) be the matrix given by
\[B = \begin{pmatrix}b_{11}&*&\cdots\cdots&&*\\ 0&b_{22}&*&\cdots&*\\ \vdots&&\ddots&&\vdots\\ &&&&*\\ 0&\cdots\cdots&0&&b_{nn}\end{pmatrix}\]Also, The above-mentioned A was:
\[\begin{pmatrix}a_{11}&*&\cdots\cdots&&*\\ 0&a_{22}&*&\cdots&*\\ \vdots&&\ddots&&\vdots\\ &&&&*\\ 0&\cdots\cdots&0&&a_{nn}\end{pmatrix}\]Thus,
\[AB = \begin{pmatrix}a_{11}b_{11}&*&\cdots\cdots&&*\\ 0&a_{22}b_{22}&*&\cdots&*\\ \vdots&&\ddots&&\vdots\\ &&&&*\\ 0&\cdots\cdots&0&&a_{nn}b_{nn}\end{pmatrix}\]
댓글남기기