Geomatics Engineering: 거리오차 증명
최대 1 분 소요
질문
다음 거리오차를 증명하라.
\[d-D = \frac{D^{3}}{12r^{2}}\]
\[(\text{Here, } D = 2r\frac{\theta}{2})\]
답변
\[\tan{\frac{\theta}{2}} = \frac{\frac{d}{2}}{r}\]
\[\therefore d = 2r\tan{\frac{\theta}{2}}\]
\[\text{Here,}\]
\[\text{By Taylor series}\]
\[tan{\frac{\theta}{2}} = \frac{\theta}{2} + \frac{1}{3}(\frac{\theta}{2})^{3} + \cdots\]
\[\therefore d = 2r\{\frac{\theta}{2} + \frac{1}{3}(\frac{\theta}{2})^{3}\}\]
\[d = 2r\{\frac{\theta}{2} + \frac{1}{3}(\frac{\theta}{2})^{3}\} = 2r\{\frac{D}{2r} + \frac{1}{3}(\frac{D}{2r})^{3}\}\]
\[(\because \frac{\theta}{2} = \frac{D}{2r})\]
\[= D + \frac{2r}{3}(\frac{D^{3}}{8r^{3}})\]
\[= D + \frac{D^{3}}{12r^{2}}\]
\[\therefore d-D = \frac{D^{3}}{12r^{2}}\]
댓글남기기